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Abstract
Out-of-distribution (OOD) detection aims to en-
sure AI system reliability by rejecting inputs
outside the training distribution. Recent work
shows that memorizing atypical samples dur-
ing later stages of training can hurt OOD detec-
tion, while strategies for forgetting them show
promising improvements. However, directly for-
getting atypical samples sacrifices ID general-
ization and limits the model’s OOD detection
capability. To address this issue, we propose
Progressive Self-Knowledge Distillation (PSKD)
framework, which strengthens the OOD detection
capability by leveraging self-provided uncertainty-
embedded targets. Specifically, PSKD adaptively
selects a self-teacher model from the training his-
tory using pseudo-outliers, facilitating the learn-
ing of uncertainty knowledge via multi-level dis-
tillation applied to features and responses. As a
result, PSKD achieves better ID generalization
and uncertainty estimation for OOD detection.
Moreover, PSKD is orthogonal to most existing
methods and can be integrated as a plugin to col-
laborate with them. Experimental results from
multiple OOD scenarios verify the effectiveness
and general applicability of PSKD.

1. Introduction
In real-world scenarios, deep learning models are inevitably
exposed to unseen classes of samples that lie outside the
training distribution (Yang et al., 2021), known as OOD
data. Persisting in classifying OOD data into one of the
predefined training classes is meaningless. Such unreliable
behavior could lead to disastrous consequences, particularly
in safety-critical fields like autonomous driving (Geiger
et al., 2012) and medical diagnosis (Litjens et al., 2017).
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Figure 1: Upper: The FPR95 (lower values indicate better
OOD detection) curves for various OOD datasets and the
ID test accuracy curve, tracked when CIFAR-10 is used as
the ID dataset for training. Lower: Comparisons of existing
methods and our PSKD for handling atypical samples.

This highlights the necessity of OOD detection to ensure AI
system reliability by enabling models to identify and reject
predictions for OOD inputs.

Up to now, many efforts have been made in pursuing re-
liable detection methods. Early methods, represented by
MSP (Hendrycks & Gimpel, 2017), ODIN (Liang et al.,
2018) and Energy (Liu et al., 2020), focus on developing
suitable scoring functions for OOD uncertainty estimation.
However, having a well-trained model with a solid basis
for OOD detection is an essential prerequisite. To this end,
a series of studies delve into training-time regularization
methods, which can be categorized into two main areas
(Zhang et al., 2023b). The first involves exploring alterna-
tive training strategies to train stronger models with better
discriminative representations (DeVries & Taylor, 2018; Se-
hwag et al., 2021; Wei et al., 2022; Pei, 2024). The second
involves introducing realistic outliers to help OOD detectors
learn more robust decision boundaries (Hendrycks et al.,
2019; Liu et al., 2020; Wang et al., 2023; Jiang et al., 2024).
Despite the promising performance achieved by these meth-
ods, limited attention is given to the models’ intrinsic OOD
detection capabilities, which constrains their full potential.
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To provide an intuitive explanation of this issue, we monitor
the model’s performance on the ID classification and OOD
detection throughout the entire training process, as shown
in Figure 1. The results show that the model’s optimal OOD
detection performance occurs at an intermediate stage be-
fore convergence, rather than at the final well-trained state.
Moreover, Zhu et al. (2023) have confirmed that this phe-
nomenon is prevalent across a variety of training settings.
They attribute this to the model’s tendency to memorize
atypical samples during later stages of training, which bene-
fits ID generalization but leads the model to become more
confident about OOD data, thereby hurting OOD detection
(Zhu et al., 2023). In response, they propose Unleashing
Mask / Unleashing Mask Adopts Pruning (UM/UMAP),
which uses gradient ascent to forget these atypical samples,
thereby backtracking the model to an earlier state with better
OOD detection capabilities. However, determining the ex-
tent of model backtracking is labor-intensive and needs to be
empirically found by the users. More importantly, directly
forgetting atypical samples can sacrifice ID generalization
and limit the model’s OOD detection capability.

Targeting these important problems, we propose a novel self-
learning framework termed Progressive Self-Knowledge
Distillation (PSKD), designed to leverage self-provided
uncertainty-embedded targets for more effective learning
from both typical and atypical samples. Concretely, PSKD
adaptively selects the teacher model with the most reliable
uncertainty estimation from the current training history,
which can be assisted by generated pseudo-outliers. Multi-
level distillation, applied to both features and responses,
is then used to facilitate more effective learning of OOD
knowledge from uncertainty-embedded targets provided by
the teacher model. This can mitigate overconfident pre-
dictions caused by treating training samples with varying
uncertainties uniformly via one-hot targets. As a result,
PSKD achieves more reliable uncertainty estimation for
OOD detection, while also offering the additional benefit
of improved ID generalization. Moreover, PSKD can be
integrated as a plugin, leveraging self-distillation to restore
the model’s intrinsic OOD detection capability. This estab-
lishes a solid OOD detection model basic for most existing
methods, thereby pushing their performance further.

2. Related Work
2.1. Out-of-Distribution Detection

OOD Scoring Methods aim to provide suitable measures
to indicate the likelihood that a sample originates from the
OOD distribution (Lee et al., 2018; Huang et al., 2021;
Djurisic et al., 2023; Xu et al., 2024; Xu & Yang, 2025).
For example, MSP (Hendrycks & Gimpel, 2017) directly
uses the maximum SoftMax score as the criterion. ODIN
(Liang et al., 2018) improves the MSP score by introducing

input perturbations and temperature scaling. Energy score
(Liu et al., 2020) utilizes the logsumexp of the output logits,
which is provably aligned with the density of inputs. Our
work is orthogonal to these methods, as it focuses on estab-
lishing a stronger model foundation for OOD detection.

Training-Time Regularization Methods aim to calibrate
the model to address OOD detection. One major category
of methods involves altering training strategies to provide
better discriminative representations for OOD detection
(Zhou et al., 2021; Huang & Li, 2021; Zhang & Xiang,
2023). LogitNorm (Wei et al., 2022) and T2Fnorm (Regmi
et al., 2024) provide alternatives to cross-entropy loss by
decoupling the impact of logits and feature norms, respec-
tively. SNN (Ghosal et al., 2024) learns the most relevant
subspace to tackle the curse-of-dimensionality problem in
distance-based OOD detection. Zhu et al. (2023) propose
UM/UMAP to revert a well-trained model to an earlier
stage, aiming to forget memorized atypical samples which
hurt OOD detection. Another category introduces realis-
tic outliers to facilitate the model in learning more robust
decision boundaries (Li & Vasconcelos, 2020; Ming et al.,
2022; Yang et al., 2023; 2024). OE (Hendrycks et al., 2019)
forces the predictive distribution of outliers to be uniform.
MixOE (Zhang et al., 2023a) mixes ID data and outliers to
expand the coverage of different OOD granularities. DOE
(Wang et al., 2023) utilizes model perturbations to implicitly
broaden the coverage of outliers for better generalization.
While effective in OOD detection, these methods often de-
grade ID task performance, and realistic outliers are typi-
cally costly to acquire.

2.2. Knowledge Distillation

Knowledge distillation is a popular learning method where
a student model is trained to mimic the behavior of a more
powerful teacher model (Gou et al., 2020; Cao et al., 2023).
The idea originally stems from Bucila et al. (2006), and
is later formally popularized by Hinton et al. (2015). Dif-
ferent knowledge can be utilized, represented by response-
based knowledge (Hinton et al., 2015) and feature-based
knowledge (Romero et al., 2015; Ahn et al., 2019). Self-
distillation is a special case of knowledge distillation, where
the same network is adopted for both the teacher and stu-
dent models. Intuitively, it enables the model to refine itself
via extended learning of its self-knowledge. In this con-
text, Zhang et al. (2019) explore distilling knowledge from
the deeper layers of the network into its shallower layers.
Yang et al. (2019) propose transferring knowledge from
the early stages (teacher) of the network to the later stages
(student) to facilitate the supervised training process. More-
over, Mobahi et al. (2020) provide a theoretical analysis of
self-distillation, and Zhang & Sabuncu (2020) empirically
demonstrate its improved performance.
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3. Preliminaries
Setup. In this paper, we focus on the setting of K-way
image classification. Formally, let X be the input space and
Yin = {1, 2, ...,K} be the ID label space. The learner has
access to a labeled training set Dtrain = {(xi,yi)}ni=1 and a
validation set Dval, where the samples are drawn i.i.d. from
a joint distribution PXYin . Let fθ : X → RK denote the
classification model parameterized by θ, which is learned
by minimizing the empirical risk: θ∗ = argminθ RID(fθ),
where RID(fθ) = E(x,y)∈Dtrainℓ(fθ(x),y) and ℓ is the loss
function. Generally, a SoftMax layer with temperature T
(normally set to 1) is applied for the prediction fθ(x):

pi =
exp(zi/T )∑
j exp(zj/T )

, (1)

where zi is the logit for the i-th class. A larger T can make
the probability distribution softer, which can be beneficial
for knowledge distillation (Hinton et al., 2015).

OOD Detection aims to discern OOD data arising from an
irrelevant distribution whose label set has no intersection
with Yin (Yang et al., 2021). In general, the OOD detector
gτ (·) is given by:

gτ (x) =

{
ID, if S(x; fθ) > τ ;

OOD, if S(x; fθ) ≤ τ,
(2)

where τ is a threshold typically chosen to correctly classify
the majority of ID data (e.g., 95%), and S(x; fθ) : X → R
is the OOD scoring function, which quantifies model uncer-
tainty as a scalar value. Representative scoring functions
include the MSP (Hendrycks & Gimpel, 2017) and Energy
score (Liu et al., 2020), which are defined as follows:

SMSP(x; fθ) = max
i

pi, SEnergy(x; fθ) = log
∑
i

exp(zi).

(3)
Since OOD labels lie outside the training label space, the
model tends to produce lower expected scores compared
to ID cases. However, OOD detection remains non-trivial
because deep models can be overconfident when faced with
OOD data (Nguyen et al., 2015; Bendale & Boult, 2016).

4. Proposed Method
4.1. Motivation and Framework

As illustrated in Figure 1, the model’s optimal OOD de-
tection performance is achieved at an intermediate stage
of training before full convergence, rather than at the final
well-trained state. In other words, a trade-off exists between
pursuing better performance of the main task (ID prediction)
and the OOD detection task. Zhu et al. (2023) attribute this
inconsistency to the model’s tendency to memorize atypical

samples, which improves ID generalization but simultane-
ously makes the model more confident about OOD data,
thereby hindering OOD detection. Accordingly, Zhu et al.
(2023) propose UM and its variant UMAP, which directly
forget atypical samples to revert the model to an earlier
state. Conversely, in this paper, we explore how to learn
from valuable atypical samples effectively.

Typically, the training set in supervised learning consists
of pairs of an input image and its corresponding one-hot
target. However, in the context of uncertainty estimation for
OOD detection, assigning all training samples an absolutely
confident one-hot target can be a potential hindrance. This
could hinder the model’s ability to effectively learn to differ-
entiate between samples with varying levels of uncertainty,
potentially leading to overconfidence in its uncertainty esti-
mates when encountering OOD data. Therefore, providing
sample-level uncertainty knowledge as the learning objec-
tive for OOD detectors is crucial. Intuitively, atypical sam-
ples should be assigned higher uncertainty soft targets for
learning compared to typical samples. However, a practi-
cal challenge is that hand-crafting uncertainty-embedded
targets is prohibitively costly, requiring substantial expert
knowledge and labor-intensive efforts.

To this end, we propose a self-learning paradigm PSKD
that leverages uncertainty-embedded targets, self-provided
by the teacher model selected from the current training
history, as a substitute to facilitate the model’s learning of
uncertainty knowledge. Figure 2 illustrates the framework
of our proposal. Conceptually, PSKD jointly optimizes
for both: (1) accurate ID classification, and (2) reliable
uncertainty estimation. Formally, let the self-selected OOD
teacher model be denoted as fθ∗ , the overall risk can be
formalized with a weight factor λ as follows:

argmin
θ

[(1− λ) ·RID(fθ)︸ ︷︷ ︸
ID classification

+ λ ·ROOD(fθ; fθ∗)︸ ︷︷ ︸
Self OOD knowledge distillation

],

(4)
where the term RID(fθ) is intended to learn ID classifica-
tion capability, which can be cross-entropy loss in vanilla
training, while ROOD(fθ; fθ∗) is designed to learn uncer-
tainty estimation knowledge from the self-selected OOD
teacher model. To prevent large bias in the teacher model’s
responses during early training, we dynamically adjust the
weights of ID learning and self-distillation for effective ini-
tial learning. Mathematically, the weight factor λ at epoch
e is computed using a cosine annealing schedule as follows:

λ =
λfinal

2

(
1− cos

( e

E
π
))

, (5)

where λfinal is the final self-distillation weight, and E is the
total number of training epochs. To make PSKD feasible,
we have two key challenges that need to be addressed: (1)
how to identify and select a desired teacher model fθ∗ , and
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Figure 2: Illustration of model training in a self-learning paradigm with PSKD. During the training phase, the model is
jointly supervised by both actual targets and uncertainty-embedded teacher signals. In the validation phase, pseudo-outliers
are used with the validation set for OOD detection capability comparison. The OOD teacher model is replaced by the
student model when the student performs OOD detection better. This process can be iteratively repeated over time.

(2) how to effectively learn OOD knowledge from the self-
selected teacher model.

4.2. Self-Selection of the OOD Teacher Model

To acquire the OOD teacher model, the first crucial step
is to define explicit criteria for assessing and comparing
the OOD detection performance of different models. In
this work, we adopt the AUROC (Area Under the Receiver
Operating Characteristic curve), a widely recognized metric
in OOD detection, as it provides a comprehensive evaluation
across various decision thresholds. Given a model fθ, an ID
dataset DID, an OOD dataset DOOD, and the OOD scoring
function S(·; fθ), the OOD detection capability of fθ can
be approximately quantified using the AUROC as follows:

A(fθ) =

∑
x∈DID

∑
x′∈DOOD

I(S(x; fθ) > S(x′; fθ))

|DID| · |DOOD|
,

(6)
where I(·) denotes the indicator function and |D| denotes
the cardinality of the set D. The validation dataset Dval can
naturally serve as a reference for DID. As for DOOD, we
adopt a generic outlier generation strategy by perturbing
or corrupting images from Dval to create the OOD data, as
obtaining realistic outliers is often costly or impractical. The
generation details and the impact of using pseudo-outliers
from different sources, as well as the choice of S(·; fθ), are
further discussed in Section 5.4.

In the context of the evaluation criteria, a strong OOD de-
tector is expected to assign higher scores to ID cases than
OOD cases, resulting in a higher A(·). To maintain the
advanced uncertainty estimation capability of the teacher,
PSKD dynamically selects the teacher model that achieves
the best A(·) determined from the current training history,

periodically after a certain number of training steps (e.g.,
after one epoch in the validation stage).

4.3. Self-Knowledge Distillation

To efficiently learn OOD knowledge from the teacher model,
we focus on knowledge at the response and penultimate fea-
ture levels, which are most relevant and impactful for OOD
detection (Zhu et al., 2022). At the response level, PSKD
leverages self-provided uncertainty-embedded targets de-
rived from the teacher’s predictions, enabling the model to
learn uncertainty knowledge that reflects the teacher’s reli-
able behavior in uncertain scenarios. This can be achieved
by minimizing the Kullback-Leibler (KL) divergence be-
tween the output probabilities of the classifiers:

Rlogits(fθ; fθ∗) = Ex∈Dtrain KL
(
pf∗

θ
(x) ∥ pfθ (x)

)
, (7)

where pf∗
θ
(x) and pfθ (x) represent the softmax outputs

from the teacher and student models, respectively.

On the other hand, feature-level supervision comes from
the deepest classifier’s hint, defined as the teacher model’s
feature representation guiding the student’s learning (Hinton
et al., 2015). This is achieved by reducing the distance
between feature maps in the teacher model and the student
model:

Rfeat(fθ; fθ∗) = Ex∈Dtrain ∥hθ∗(x)− hθ(x)∥22 , (8)

where hθ∗(x) and hθ(x) denote the penultimate feature rep-
resentations of the teacher and student models, respectively.

To sum up, the self-OOD knowledge distillation risk can be
formalized with a weighting factor α as follows:

ROOD(fθ; fθ∗) = Rlogits(fθ, fθ∗) + α ·Rfeat(fθ, fθ∗). (9)

The pseudo code of PSKD is available in Appendix A.
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Figure 3: Performance tracking curves for ID prediction and
OOD detection tasks. The OOD results are averaged over
near- and far-OOD groups on the CIFAR-10 benchmark.
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Figure 4: Changes in OOD score distribution using PSKD.

4.4. Insight Justification

The following remarks are provided to empirically elaborate
on the insights of PSKD.

Remark 1. PSKD restores the model’s intrinsic OOD de-
tection capability and also benefits ID generalization. As
shown in Figure 3, in the later stages of vanilla training, the
model’s OOD detection capability weakens due to its mem-
orization of atypical samples. In this regard, PSKD restores
the model’s intrinsic OOD detection capability through self-
distillation and further enhances it by effectively learning un-
certainty from atypical samples. Moreover, PSKD achieves
additional improvements in the original task by making bet-
ter use of atypical samples, without requiring a trade-off
between ID task performance and OOD detection perfor-
mance, as would occur when directly forgetting valuable
atypical samples.

Remark 2. PSKD alleviates the overconfidence of OOD
data by learning with uncertainty-embedded targets.
Traditional supervision is provided via one-hot vectors,
which fails in uncertainty learning by assigning absolute
confidence to samples with varying levels of uncertainty.
This can make the model prone to overconfidence when
confronted with OOD samples. To address this problem,

our proposed leverages the potential within the model’s
own learning process to generate soft targets that inherently
capture sample-level uncertainty. Specifically, PSKD alle-
viates overfitting to atypical samples by learning from the
uncertainty-embedded targets provided by the self-selected
teacher model, thereby effectively enhancing the model’s
ability to perceive uncertainty. As shown in Figure 4, PSKD
significantly reduces the model’s overconfidence in OOD
samples, as evidenced by the decrease in the right tail of the
OOD score distribution for OOD data, thereby improving
ID-OOD separation.

5. Experiments
In this section, we first describe our experimental setup, then
present the main results on multiple OOD detection bench-
marks, followed by ablation studies and further analysis.

5.1. Experimental Setup

Following standard practices (Zhang et al., 2023b), we eval-
uate our PSKD using the OpenOOD v1.5 benchmark on
both small-scale CIFAR and large-scale ImageNet, cover-
ing near-OOD scenarios with semantic shifts and far-OOD
scenarios with further obvious covariance shifts 1.

Datasets. For small-scale experimental setups, CIFAR-
10/100 (Krizhevsky, 2009) is adopted as the ID dataset.
The near-OOD group contains CIFAR-100/10 and Tiny-
ImageNet (Le & Yang, 2015), while the far-OOD group
consists of MNIST (Deng, 2012), SVHN (Netzer et al.,
2011), Textures (Cimpoi et al., 2014), and Places365 (Zhou
et al., 2018). For the realistic outlier dataset, we follow
the OpenOOD standards and use TinyImageNet-597 (Le &
Yang, 2015), which has no category overlap with CIFAR-
10/100 and the OOD test sets.

Large-scale experiments are conducted on ImageNet-200, a
200-class subset of ImageNet-1K (Deng et al., 2009), as the
ID dataset. Evaluations cover near-OOD scenarios, includ-
ing SSB-hard (Vaze et al., 2022) and NINCO (Bitterwolf
et al., 2023), as well as far-OOD scenarios, including iNat-
uralist (Horn et al., 2018), Textures (Cimpoi et al., 2014),
and OpenImage-O (Wang et al., 2022). The rest 800 classes
from ImageNet-1K are used as realistic outlier data.

Evaluation Metrics. We report three widely adopted met-
rics: (1) FPR95, the false positive rate of OOD data at a
95% true positive rate of ID data; (2) AUROC, commonly
referred to as AUC, is used here following (Zhang et al.,
2023b) to denote the area under the receiver operating char-
acteristic curve; and (3) ID ACC, the classification accuracy
on the ID test set.

1The code for this work is available at https://github.
com/njustkmg/ICML25-PSKD
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Table 1: Comparison on CIFAR benchmarks. All values are percentages, and OOD detection results are averaged over
multiple OOD test datasets. The best results are in bold, with the second-best underlined. Detailed results for each OOD
dataset are provided in Appendix G. ↑ indicates that larger values are better, while ↓ indicates that smaller values are better.

Method
CIFAR-10 CIFAR-100

Near-OOD Far-OOD ID ACC↑ Near-OOD Far-OOD ID ACC↑FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
OOD scoring methods (vanilla training with cross-entropy)

MSP 48.17±3.92 88.03±0.25 31.72±1.84 90.73±0.43 95.06±0.30 54.80±0.33 80.27±0.11 58.70±1.06 77.76±0.44 77.25±0.10

ODIN 76.19±6.08 82.87±1.85 57.62±4.24 87.96±0.61 95.06±0.30 57.91±0.51 79.90±0.11 58.86±0.79 79.28±0.21 77.25±0.10

Energy 61.34±4.63 87.58±0.46 41.69±5.32 91.21±0.92 95.06±0.30 55.62±0.61 80.91±0.08 56.59±1.38 79.77±0.61 77.25±0.10

Energy+UM 33.12±0.47 90.60±0.37 22.95±1.65 93.67±0.68 92.33±0.41 65.86±2.06 77.14±0.62 51.90±2.04 81.63±1.70 72.21±0.43

Energy+UMAP 33.01±0.06 91.00±0.07 21.70±1.57 94.20±0.36 95.06±0.30 59.71±0.65 79.49±0.23 52.11±2.36 81.62±1.37 77.25±0.10

Energy+PSKD 31.67±0.78 91.71±0.16 20.48±1.30 94.56±0.29 95.14±0.08 54.83±2.79 81.45±0.44 51.56±2.39 82.40±0.52 77.44±0.09

Training-time regularization methods (w/o realistic outliers)
LogitNorm 29.34±0.81 92.33±0.08 13.81±0.20 96.74±0.06 94.30±0.25 62.89±0.57 78.47±0.31 53.61±3.45 81.53±1.26 76.34±0.17

SNN 37.21±0.70 90.25±0.09 26.05±2.34 92.49±0.78 95.11±0.13 60.32±1.44 80.33±0.22 53.52±1.77 82.17±0.69 77.56±0.27

T2FNorm 26.47±0.35 92.79±0.13 12.75±0.73 96.98±0.23 94.69±0.07 58.47±1.35 79.84±0.40 51.25±2.52 82.73±1.01 76.43±0.13

T2FNorm+UM 27.79±0.55 92.74±0.16 14.06±1.31 96.80±0.28 94.02±0.13 59.42±0.74 79.32±0.24 51.09±0.98 83.71±0.37 75.67±0.41

T2FNorm+UMAP 26.78±0.75 93.08±0.28 13.11±0.81 97.01±0.19 94.69±0.07 59.77±0.03 79.63±0.28 49.92±4.16 83.81±1.84 76.43±0.13

T2FNorm+PSKD 25.72±0.28 93.18±0.12 13.07±0.17 96.94±0.11 95.06±0.01 57.26±0.26 80.50±0.25 49.15±1.67 84.13±0.69 77.14±0.08

Training-time regularization methods (w/ realistic outliers)
MixOE 51.45±7.78 88.73±0.82 33.84±4.77 91.93±0.69 94.55±0.32 55.22±0.49 80.95±0.20 63.88±2.48 76.40±1.44 75.13±0.06

DOE 20.39±0.15 94.84±0.07 15.59±1.47 94.67±0.69 94.32±0.19 37.84±1.05 86.61±0.29 45.38±0.52 84.30±0.81 75.69±0.26

OE 19.84±0.95 94.82±0.21 13.13±0.53 96.00±0.13 94.63±0.26 30.73±0.11 88.30±0.10 54.82±2.79 81.41±1.49 76.84±0.42

OE+UM 18.18±0.97 95.04±0.24 12.55±2.63 96.36±0.37 94.51±0.31 30.71±0.46 88.28±0.23 53.42±2.29 81.92±1.58 76.51±0.37

OE+UMAP 18.20±0.51 95.06±0.14 12.12±2.24 96.37±0.65 94.63±0.26 30.16±0.08 88.44±0.08 54.07±1.21 82.42±0.87 76.84±0.42

OE+PSKD 18.55±0.21 95.08±0.12 12.21±0.53 96.58±0.44 94.75±0.18 31.55±0.57 88.24±0.15 48.72±0.74 84.60±0.43 76.99±0.05

Baselines. We compare our proposed method with a suite
of competitive baselines, including: (1) OOD scoring meth-
ods with vanilla training (using cross-entropy loss): MSP
(Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018),
and Energy (Liu et al., 2020); (2) training-time regulariza-
tion methods without realistic outliers: LogitNorm (Wei
et al., 2022), T2Fnorm (Regmi et al., 2024), and SNN
(Ghosal et al., 2024); and (3) training-time regularization
methods with realistic outliers: OE (Hendrycks et al., 2019),
MixOE (Zhang et al., 2023a), and DOE (Wang et al., 2023).
Moreover, we compare the most relevant methods, UM and
UMAP (Zhu et al., 2023), both of which, same as our PSKD,
function as plug-in solutions designed to restore the model’s
intrinsic OOD detection capability.

Implementation Details. In line with OpenOOD (Zhang
et al., 2023b), we adopt ResNet-18 (He et al., 2016) as the
backbone architecture. Models are trained with stochastic
gradient descent (SGD) for 100 epochs, using a learning rate
of 0.1 with cosine annealing decay schedule (Loshchilov
& Hutter, 2017), momentum of 0.9, and weight decay of
5 × 10−4. The batch size is set to 128 for CIFAR-10/100
and 256 for ImageNet-200. For validation, 1000 samples
from the official test set are used, while the remainder are
for testing. The model’s self-selection mechanism is applied
after the validation step at the end of each epoch. Hyperpa-

rameter selection is performed via a grid search using the
ID and OOD validation samples from OpenOOD, and the
parameters achieving the best AUROC are used for the final
test. We leave more implementation details in Appendix B.

5.2. Main Results

In this section, we present a comprehensive evaluation of
our proposed PSKD method on both small-scale CIFAR
benchmarks, detailed in Table 1, and the more realistic
and challenging ImageNet benchmark, summarized in Ta-
ble 2. The experimental results demonstrate that: (1) On
small-scale CIFAR benchmarks, PSKD can consistently im-
prove baseline methods by restoring the model’s intrinsic
OOD detection capabilities across different OOD scenar-
ios, while also achieving additional gains in ID accuracy.
(2) On the large-scale ImageNet benchmark, PSKD con-
tinues to exhibit competitive OOD detection performance
while achieving the best ID accuracy among the compared
methods. (3) Overall, PSKD outperforms the UM/UMAP
method across a range of benchmark tests. This demon-
strates the efficacy of the self-learning mechanisms, which
leverage the continuously evolving self-selection teacher
model to effectively push the model beyond its intrinsic
OOD detection capability limits.
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Table 2: Comparison on large-scale ImageNet benchmark. All values are percentages, and OOD detection results are
averaged over multiple OOD test datasets. Detailed results for each OOD dataset are provided in Appendix G.

Method Near-OOD Far-OOD Average ID ACC↑FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
OOD scoring methods (vanilla training with cross-entropy)

MSP 54.82±0.35 83.34±0.06 35.43±0.38 90.13±0.09 45.13±0.32 86.74±0.07 86.37±0.08
ODIN 66.76±0.26 80.27±0.08 34.23±1.05 91.71±0.19 50.50±0.55 85.99±0.13 86.37±0.08
Energy 60.24±0.57 82.50±0.05 34.86±1.30 90.86±0.21 47.55±0.76 86.68±0.12 86.37±0.08
Energy+UM 60.23±1.13 81.79±0.38 32.46±1.30 91.68±0.37 46.34±0.81 86.74±0.28 85.01±0.31
Energy+UMAP 60.81±0.84 81.08±0.39 32.47±0.67 91.62±0.29 46.64±0.74 86.35±0.32 86.37±0.08
Energy+PSKD 57.12±0.63 82.84±0.32 31.64±0.87 91.39±0.16 44.38±0.22 87.12±0.15 86.79±0.25

Training-time regularization methods (w/o realistic outliers)
LogitNorm 57.80±1.22 82.21±0.52 25.31±0.20 93.31±0.15 41.56±0.71 87.76±0.33 86.18±0.60
SNN 59.85±0.46 81.33±0.19 28.04±0.64 92.28±0.21 43.95±0.35 86.80±0.16 86.56±0.03
T2FNorm 55.65±0.20 82.72±0.05 25.25±0.48 93.38±0.11 40.45±0.33 88.06±0.07 86.52±0.21
T2FNorm+UM 55.20±0.71 82.89±0.20 26.31±0.91 93.21±0.19 40.76±0.11 88.05±0.06 86.31±0.24
T2FNorm+UMAP 56.14±0.69 82.52±0.32 26.25±0.30 93.02±0.09 41.20±0.43 87.77±0.19 86.52±0.21
T2FNorm+PSKD 55.06±0.46 82.83±0.12 24.77±0.75 93.61±0.17 39.91±0.51 88.22±0.09 86.74±0.09

Training-time regularization methods (w/ realistic outliers)
MixOE 57.95±0.23 82.57±0.23 40.12±0.66 88.39±0.02 49.03±0.44 85.49±0.12 85.73±0.09
DOE 54.14±0.51 83.23±0.60 37.60±2.95 88.24±1.45 45.87±1.72 85.73±1.00 79.87±3.12
OE 52.55±0.51 84.51±0.21 35.18±0.63 88.21±0.19 43.86±0.49 86.36±0.20 85.78±0.12
OE+UM 51.89±0.64 84.94±0.17 34.76±0.56 88.68±0.07 43.33±0.31 86.81±0.08 85.71±0.23
OE+UMAP 52.34±0.22 84.56±0.08 35.03±0.68 88.39±0.18 43.68±0.38 86.48±0.11 85.78±0.12
OE+PSKD 51.88±0.47 84.98±0.10 34.14±0.33 88.61±0.10 43.01±0.12 86.79±0.03 86.31±0.11
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Figure 5: Ablation studies on the hyperparameters: (a) influence of various adjustment strategies for λ; (b) impact of final
weight λfinal in cosine annealing schedule; (c) impact of varying the weighting factor α in ROOD; (d) effects of different
temperature scaling T for self-distillation.

5.3. Ablation Study

Effect of Adjustment Strategies for λ. Figures 5(a) an-
alyze the impact of different λ-adjustment strategies in
Equation (4), specifically considering the constant strategy
(Const), where λ remains fixed; the exponential strategy
(Exp), which leads to rapid initial growth of λ; the linear
strategy (Linear), where λ increases at a constant rate; and
the cosine strategy (Cos) with an initial soft decline de-
scribed in Equation (5). Appendix B.3 provides the details
of various adjustment strategies. The results indicate that
Const and Exp strategies over-rely on the OOD teacher early
in training, preventing the model from effectively learning
ID knowledge, thereby constraining the development of
OOD discrimination capabilities. In contrast, Linear and
Cos strategies better promote ID learning and OOD detec-

tion, with Cos showing the most pronounced improvements.
Figure 5(b) illustrates the impact of varying λfinal in Equa-
tion (5) within the Cos strategy. The significant decline
in performance when λfinal = 0 highlights the importance
of PSKD in OOD learning. Moreover, since the learning
objective of PSKD aims to provide secondary information,
a relatively smaller parameter setting is most beneficial,
whereas excessively large settings may lead to misleading
results and degraded performance.

Effect of the Weighting Factor α. In Figure 5(c), we evalu-
ate the impact of varying the weighting factor α in Equation
(9), which governs the balance between response-level and
feature-level knowledge in distillation. As we can see, the
performance markedly worsens when feature-level distilla-
tion is excluded (i.e., α = 0), underscoring the critical role
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Table 3: Impact of varying teacher selection intervals on
CIFAR-10 benchmark. OOD results are averaged over near-
and far-OOD groups. * denotes the default setting.

Teacher Selection Interval FPR95↓ AUROC↑ ID ACC↑
10 selections per 1 epoch 26.25±1.46 93.11±0.22 95.08±0.22
5 selections per 1 epoch 25.79±2.17 93.29±0.30 95.30±0.07
1 selection per 1 epoch* 26.08±1.02 93.14±0.21 95.14±0.08
1 selection per 5 epochs 26.86±0.91 92.96±0.37 95.14±0.17

of feature-level OOD discrimination knowledge. Further-
more, a large α places too much emphasis on feature-level
distillation, leading to suboptimal performance. Therefore,
striking a moderate balance is more beneficial for uncer-
tainty learning, resulting in better performance.

Effect of Temperature Scaling T . Figure 5(d) examines
the impact of temperature scaling T on the uncertainty-
embedded target learning in distillation. Compared to the
baseline (i.e. T = 1), higher T facilitates knowledge trans-
fer by softening targets, thereby providing richer discrim-
ination signals for the distillation process and ultimately
improving performance. In contrast, excessively high tem-
peratures can overly smooth the teacher signals, resulting in
a loss of information. This undermines the intended purpose
and degrades overall performance. Thus, a mild temperature
provides the best effect for OOD knowledge learning.

Effect of Teacher Update Frequency. In Table 3, we exam-
ine the effect of teacher model update intervals on training
stability and final performance. The results demonstrate that
PSKD maintains stable training dynamics across a range
of update settings. Notably, appropriately increasing the
update frequency can enhance OOD detection performance
by providing the model with more frequent guidance. This
enables the model to better explore and refine its intrinsic
OOD detection capacity. However, such gains come at the
cost of increased computational overhead, highlighting a
trade-off between performance and efficiency.

5.4. Further Analysis

Impact of Teacher Selection Strategies. To validate the
effectiveness of progressive teacher selection, we design
another version of the teacher selection strategy: the sta-
tionary strategy (PSKD-S), wherein models are sequentially
compared in pairs based on the value of A(·) with Equa-
tion (6) throughout the training process to identify the one
with the best OOD performance. The model exhibiting the
best OOD detection capability is selected as fθ∗ and used
to guide the retraining of models to learn better OOD dis-
crimination capabilities. The results in Table 4 validate that
PSKD performs better than PSKD-S in all OOD detection
tasks, which verifies that progressive distillation can further
enhance performance by continually refining itself.

Table 4: Teacher selection strategy comparison. PSKD-S
refers to the strategy without progressive selection. The best
results are in bold, and the second-best are underlined.

Dataset Method FPR95↓ AUROC↑ ID ACC↑

CIFAR-10
Vanilla 51.52±3.82 89.40±0.42 95.06±0.30
+PSKD-S 28.18±3.29 92.82±0.68 95.06±0.05
+PSKD 26.08±1.02 93.14±0.21 95.14±0.08

CIFAR-100
Vanilla 56.10±0.99 80.34±0.34 77.25±0.10
+PSKD-S 53.40±0.96 81.78±0.06 77.57±0.07
+PSKD 53.19±1.13 81.93±0.13 77.44±0.09

ImageNet-200
Vanilla 47.55±0.76 86.68±0.12 86.37±0.08
+PSKD-S 46.32±0.43 86.90±0.16 86.86±0.13
+PSKD 44.38±0.22 87.12±0.15 86.79±0.25

Table 5: Impact of OOD scoring selection on AUROC based
on the CIFAR-10 benchmark.

Self-selection
OOD score Method Test-time OOD score

MSP Energy KNN

/ Vanilla 89.38±0.18 89.40±0.42 91.99±0.10

MSP +PSKD 91.29±0.43 92.79±0.40 92.10±0.59
Energy +PSKD 91.57±0.22 93.14±0.21 92.54±0.10
KNN +PSKD 91.24±0.22 92.52±0.48 92.71±0.25

Impact of OOD Scoring Selection. Table 5 examines the
generalization performance of PSKD under different OOD
scores selected during self-selection and testing time. The
analysis covers various OOD scoring functions, including
logit-based methods like the baseline MSP (Hendrycks &
Gimpel, 2017), Energy (Liu et al., 2020), and the feature-
based KNN (Sun et al., 2022). The results reveal that: (1)
Aligning self-selection and test OOD scores (diagonal en-
tries) generally enhances performance. Notably, within the
same level, superior self-selection OOD scores better guide
teacher self-selection. For example, using Energy scores for
self-selection improves MSP test AUROC by 0.28% over
matching MSP scores. (2) Even when the score is based on
different levels, the model can still drive performance gains
through the use of PSKD. For example, using logit-based
Energy scores for self-selection and feature-based KNN
scores for testing results in a 0.55% AUROC boost over
the baseline. (3) Better OOD scores are more critical and
lead to improved performance, i.e., the Energy scores for
self-selection and testing achieve the best performance.

Impact of Pseudo-Outlier Generation Strategies. Table
6 explores the effect of different sources of pseudo-outliers
for the teacher model self-selection. Several cost-effective
strategies are considered, including image rotation (Rot)
to enhance diversity, image distortion (Dist) through resiz-
ing followed by restoration, and the addition of Gaussian
noise (Gauss) at varying intensities. Specific details are
provided in Appendix B.4. The results show that: (1) The
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Table 6: The impact of different sources of pseudo-outliers
on the CIFAR-10 benchmark. OOD results are averaged
over near- and far-OOD groups.

Source FPR95↓ AUROC↑ ID ACC↑Rot Dist Gauss

× × × 51.52±3.82 89.40±0.42 95.06±0.30

✓ ✓ × 28.52±1.26 92.65±0.13 95.07±0.12
✓ × ✓ 30.88±1.06 92.41±0.16 95.15±0.16
× ✓ ✓ 27.78±0.71 92.87±0.03 95.11±0.04
✓ ✓ ✓ 26.08±1.02 93.14±0.21 95.14±0.08

Dist and Gauss strategies achieved promising results by dis-
rupting image features to construct pseudo-outliers data. (2)
Combining the Rot strategy further improves performance
by augmenting diversity and expanding the pseudo-outliers
distribution. (3) When all considered strategies are com-
bined, the generated pseudo-outliers are the most diverse
and informative, leading to the best performance. Overall,
performance remains relatively stable across different data
quality levels, with high-quality validation sets generally
yielding the most significant performance gains.

6. Conclusion
In this paper, we explore storing models’ intrinsic OOD
detection capabilities via self-learning mechanisms, aim-
ing to establish a robust model basic for OOD detection.
To address the issue of suboptimal OOD detection perfor-
mance during the later stages of training, we propose the
PSKD framework. This framework progressively refines
the model’s OOD discrimination capability by leveraging a
self-selection teacher model. Extensive experiments demon-
strate that PSKD consistently improves OOD detection per-
formance and further enhances the effectiveness of other
OOD detection methods.
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Appendix

A. Pseudo Code of PSKD
The Pseudo code of PSKD is available in Algorithm 1.

Algorithm 1 PKSD: Progressive Self-Knowledge Distillation
Input: Training dataset Dtrain, validation dataset Dval, initial model parameters θ
Output: Trained student model fθ

1: Initialize teacher model: θ∗ = θ
2: Generate pseudo-outlier dataset DOOD from Dval
3: while student model fθ has not converged do
4: Update fθ to minimize both RID(fθ) and ROOD(fθ, fθ∗) with weight factor λ in Equation (4) over Dtrain.
5: if a predefined number of steps (e.g., one epoch) is completed then
6: Quantify the OOD detection capability of fθ and fθ∗ based on Dval and DOOD following Equation (6): A(fθ) and

A(fθ∗)
7: if A(fθ∗) ≤ A(fθ) then
8: Update teacher model: θ∗ = θ
9: end if

10: end if
11: Adjust weight factor λ following Equation (5)
12: end while
13: Return fθ

B. Implementation details
B.1. Software and Hardware

All experiments are conducted using Python 3.8.19 and PyTorch 2.0.1 on a workstation equipped with dual 2.20 GHz CPUs,
384 GB of RAM, and six NVIDIA RTX 4090 GPUs.

B.2. Validation Strategy

We use the ID and OOD validation samples from OpenOOD for hyperparameters selection of PSKD. We utilize grid search
over all possible values of λfinal×α×T to determine the optimal settings, where we vary λfinal = {0.01, 0.02, 0.03, 0.05, 0.1},
α = {1, 5}, T = {3, 5}. The hyperparameter that yields the best AUROC is used for the final test. We adopt the same
hyperparameters in the same model in all experiments. For CIFAR benchmarks, the optimal settings are λfinal = 0.01, α = 1
and T = 3. For ImageNet-200, λfinal = 0.05, α = 1 and T = 3 is optimal.

B.3. Details of Adjustment Strategies for λ

We provide details regarding the various λ adjustment strategies in Equation (4) below.

Let λfinal represent the final weight, and let E denote the total number of training epochs. Four adjustment strategies are
considered: constant strategy (Const), exponential adjustment strategy (Exp), linear adjustment strategy (Linear), and cosine
annealing adjustment strategy (Cos). The mathematical expressions for these strategies are as follows:

λConst = λfinal, λExp = λfinal

(
1− exp (−βe

E
)

)
, λLinear = λfinal ·

e

E
, λCos =

λfinal

2

(
1− cos

( e

E
π
))

, (10)

where λConst remains fixed at the final weight λfinal, λExp increases following an exponential growth influenced by a parameter
β (set to 5 in our experiment), λLinear increases linearly with the epoch number, and λCos increases according to a cosine
annealing schedule. The visualizations of these adjustment strategies are presented in Figure 6.
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Figure 6: Curves of λ under four different adjustment strategies, with the parameters fixed at λfinal = 1 and E = 100.

B.4. Details of Pseudo-Outlier Generation Strategies

We consider three cost-effective strategies for generating pseudo-outliers: rotation, distortion, and Gaussian noise. The
detailed implementation settings are provided below:

Rotation: We apply random rotation to enhance the diversity of pseudo-outliers and introduce shifts, with the rotation angle
uniformly sampled from {90°, 180°, 270°}.

Distortion: To generate challenging pseudo-outliers that resemble ID samples, we apply a distortion technique. Given an
original RGB image of size (3, h, w) and a distortion factor γ ∈ [0, 1], the image is first downsampled to (3, ⌊γh⌋, ⌊γw⌋)
using bilinear interpolation. It is then upsampled back to its original dimensions (3, h, w) using bilinear interpolation. This
procedure leads to a loss of fine-grained feature information while retaining the essential scene-level content from the
original image. For the CIFAR benchmark, the distortion factor is set to 0.16, which corresponds to downsampling an image
from its original size of 32× 32 pixels to 5× 5 pixels and then upsampling it back to 32× 32 pixels. For the ImageNet
benchmark, the distortion factor is set to 0.05, meaning the original 224 × 224 pixel image is downsampled to 11 × 11
pixels and then upsampled back to 224× 224 pixels.

Gaussian Noise: Noise with varying intensities is added to achieve different levels of random corruption to
the original ID images, simulating both near-OOD and far-OOD scenarios. Gaussian noise with a mean of 0
and a variance of σ is added to the normalized images, where σ takes each of the 10 values from the set
{0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18}. This process expands the dataset by a factor of 10, aiming
to address the limited size of the validation set provided by OpenOOD, ultimately facilitating a more accurate identification
of the desired OOD teacher model.

C. Teacher Selection with Realistic Outlier
To ensure a fair comparison, we intentionally avoid using realistic OOD data as auxiliary information in the main paper. To
further explore this aspect, Table 7 examines the impact of using realistic outliers for teacher model selection. The results
indicate that both realistic and pseudo-outlier data consistently lead to significant performance improvements. Moreover,
realistic OOD data can more accurately reflect the actual OOD distribution, thereby enhancing the robustness of teacher
model selection and further improving performance.

Table 7: The impact of different sources of OOD data for teacher selection on ImageNet-200 benchmark. Following the
settings of the OpenOOD benchmark for the OOD validation set, OpenImage-O is adopted as the realistic OOD data. The
OOD results are averaged over near- and far-OOD groups.

Methods FPR95↓ AUROC↑ ID ACC↑
Vanilla 47.55±0.76 86.68±0.12 86.37±0.08
+PSKD w/ Pseudo 44.38±0.22 87.12±0.15 86.79±0.25
+PSKD w/ Realistic 43.93±0.27 87.64±0.18 86.76±0.16
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D. Analysis of Computational Overhead
Table 8 presents the additional training overhead introduced by PSKD on both small-scale and large-scale datasets. The
results indicate that: (1) the overhead of the teacher selection process accounts for only a small fraction of the total training
cost, which is affordable. Notably, for large-scale datasets, the additional overhead of PSKD is even less significant due to
the relatively higher ratio of training samples to validation samples. (2) The generation of pseudo-outliers is conducted only
once at the beginning of training, and its computational cost is minimal compared to the overall training time.

Table 8: Overhead analysis introduced by PSKD. The training setup follows the OpenOOD benchmark, consisting of a total
of 100 epochs for CIFAR-10 (Small scale) and 90 epochs for ImageNet-200 (Large scale). The results are averaged over five
independent runs. Appendix B.1 outlines the software and hardware configurations.

Dataset One-Epoch Training One-Time Teacher Selection Total Training Pseudo-Outlier Preprocessing

CIFAR-10 10.50 seconds 1.18 seconds 21.96 minutes 0.96 minutes
ImageNet-200 252.30 seconds 8.72 seconds 397.49 minutes 1.42 minutes

E. Architectural Variants
Table 9 analyzes the robustness of PSKD across different architectures, including the CNN-based ResNet-18 and the
transformer-based Vision Transformer (Dosovitskiy et al., 2021) (ViT-B/16). The results indicate that PSKD consistently
improves the model’s OOD detection performance across different architectures and demonstrates general applicability.

Table 9: The robustness of PSKD across different architectures on the ImageNet-200 benchmark. The Energy score is
adopted for OOD scoring and the OOD results are averaged over near- and far-OOD groups.

Model Methods FPR95↓ AUROC↑ ID ACC↑

ResNet-18 Vanilla 47.55±0.76 86.68±0.12 86.37±0.08
+PSKD 44.38±0.22 87.12±0.15 86.79±0.25

Vit-B/16 Vanilla 28.80±0.41 93.61±0.19 93.90±0.10
+PSKD 27.79±0.50 93.87±0.24 94.01±0.06

F. Statistical Tests for Comparison
In this section, we report the statistical test results using AUROC as the OOD detection metric on the CIFAR-10 benchmark.
First, we rank the performance of all methods across multiple datasets, with the results recorded in Table 10. We then
perform the Friedman test to determine whether there is a significant difference in the average rankings of the methods. The
Friedman test yields a test statistic of 25.524 and a p-value of 0.00011 (which is less than the significance level of 0.05),
indicating a statistically significant difference among the methods. To further identify specific methods with significant
performance differences, we conduct a Nemenyi test, obtaining a Critical Difference (CD) value of 3.078, and present the
comparative analysis of ranking differences between our PSKD and other methods in Table 11.

The statistical test results indicate that (1) compared to Energy, Energy+PSKD effectively enhances the model’s OOD
detection capability and demonstrates a significant performance improvement; and (2) the lack of a significant difference
between our PSKD and Unleashing Mask/Unleashing Mask Adopts Pruning (UM/UMAP) can be attributed to our shared
goal of restoring the model’s intrinsic OOD detection capability. The distinction lies in our method, which utilizes an
uncertainty-embedded target to learn valuable atypical samples, whereas UM/UMAP directly discards them, resulting in a
loss of ID generalization performance and limiting the model’s OOD detection capability.

Table 10: Average ranking results of methods across multiple datasets.

MSP ODIN Energy Energy+UM Energy+UMAP Energy+PSKD

Average Rank 4.67 5.67 4.67 2.67 1.83 1.50
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Table 11: Ranking differences between our PSKD method and other comparison methods, with an asterisk (*) indicating a
significant difference, where the value exceeds the CD value of 3.078.

MSP ODIN Energy Energy+UM Energy+UMAP

Ranking Difference 3.167* 4.167* 3.167* 1.167 0.333

G. Fine-grained Results
We present the fine-grained results of our experiments on the CIFAR benchmarks, including six OOD datasets (CIFAR-
10/100, TinyImageNet, MNIST, SVHN, Textures, Place365), as well as on ImageNet-200, with five OOD datasets (SSB-hard,
NINCO, iNaturalist, Textures, OpenImage-O). The results on the CIFAR-10 benchmark are reported in Table 12 and Table
13, while the results on the CIFAR-100 benchmark are shown in Table 14 and Table 15, and the results on the ImageNet-200
benchmark are presented in Table 16 and Table 17. Our findings include: (1) By equipping with PSKD, the baseline can
achieve significant improvements and outperform other methods on most near- and far-OOD datasets. For example, on the
CIFAR-10 benchmark, PSKD can reduce FPR95 by 31.26% on CIFAR-100 (near-OOD) and 28.26% on Textures (far-OOD).
(2) In both w/o and w/ realistic outliers scenarios, the results consistently demonstrate that as a plugin, PSKD effectively
excavates the model’s intrinsic capabilities and pushes their performance further. For instance, on the CIFAR-100 benchmark,
PSKD reduced the FPR95 of OE on SVHN by 17.17%. (3) In addition to the OOD detection performance improvement,
PSKD can also improve ID accuracy by reasonably learning atypical samples. PSKD consistently achieved improvements
of 0.08%, 0.19%, and 0.42% in ID test accuracy on CIFAR-10, CIFAR-100, and ImageNet-200, respectively. This contrasts
with UM/UMAP, which directly forgets valuable atypical samples. Our proposed PSKD leverages the uncertainty-embedded
targets to learn from both typical and atypical samples, which achieves a dual success in both OOD detection performance
and main task performance.

Analysis of Performance Disparities. The performance improvement of PSKD is inherently dependent on the model’s
intrinsic OOD capability relative to the training data. Compared to the small-scale CIFAR dataset, the large-scale ImageNet
dataset encompasses a larger and more complex semantic space. Under the same ResNet-18 architecture used in our
paper, models trained on the more challenging ImageNet dataset tend to learn a more crowded feature space, increased
class overlap, and unreliable decision boundaries. These factors contribute to the model’s relatively weak intrinsic OOD
detection capability (Huang & Li, 2021), limiting PSKD’s potential to restore the model’s intrinsic OOD detection capability.
Consequently, the performance improvements on ImageNet are less pronounced, while substantial gains are observed on
the simpler CIFAR-10 benchmark. Although the improvements vary across datasets of different scales, PSKD consistently
enhances the model’s OOD detection performance, proving its effectiveness.
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Table 12: Fine-grained results (AUROC↑) on the CIFAR-10 benchmark.

Method Near-OOD Far-OOD ID ACCCIFAR-100 TinyImageNet Average MNIST SVHN Textures Places365 Average

OOD scoring methods (vanilla training with cross-entropy)
MSP 87.19±0.33 88.87±0.19 88.03±0.25 92.63±1.57 91.46±0.40 89.89±0.71 88.92±0.47 90.73±0.43 95.06±0.30
ODIN 82.18±1.87 83.55±1.84 82.87±1.85 95.24±1.96 84.58±0.77 86.94±2.26 85.07±1.24 87.96±0.61 95.06±0.30
Energy 86.36±0.58 88.80±0.36 87.58±0.46 94.32±2.53 91.79±0.98 89.47±0.70 89.25±0.78 91.21±0.92 95.06±0.30
Energy+UM 89.08±0.33 92.12±0.44 90.60±0.37 96.86±0.87 92.29±2.86 92.10±0.53 93.41±0.59 93.67±0.68 92.33±0.41
Energy+UMAP 89.67±0.18 92.33±0.09 91.00±0.07 97.70±0.53 94.30±1.69 91.23±0.32 93.58±0.48 94.20±0.36 95.06±0.30
Energy+PSKD 90.62±0.16 92.80±0.16 91.71±0.16 97.20±0.30 94.98±1.57 93.38±0.37 92.69±0.40 94.56±0.29 95.14±0.08

Training-time regularization methods (w/o realistic outliers)
LogitNorm 90.95±0.22 93.70±0.06 92.33±0.08 99.14±0.45 98.25±0.41 94.77±0.43 94.79±0.16 96.74±0.06 94.30±0.25
SNN 89.32±0.09 91.18±0.09 90.25±0.09 93.53±1.04 91.98±1.76 92.94±0.34 91.49±0.23 92.49±0.78 95.11±0.13
T2FNorm 91.56±0.10 94.02±0.16 92.79±0.13 99.28±0.27 98.81±0.22 95.44±0.77 94.40±0.32 96.98±0.23 94.69±0.07
T2FNorm+UM 91.21±0.20 94.28±0.12 92.74±0.16 99.19±0.21 98.12±0.08 95.10±0.64 94.79±0.30 96.80±0.28 94.02±0.13
T2FNorm+UMAP 91.69±0.28 94.47±0.28 93.08±0.28 99.37±0.22 98.63±0.35 95.30±0.13 94.74±0.27 97.01±0.19 94.69±0.07
T2FNorm+PSKD 91.95±0.11 94.41±0.15 93.18±0.12 99.23±0.19 98.50±0.34 95.47±0.71 94.54±0.11 96.94±0.11 95.06±0.01

Training-time regularization methods (w/ realistic outliers)
MixOE 87.47±0.97 90.00±0.73 88.73±0.82 91.66±2.21 93.82±1.27 91.84±0.51 90.38±0.55 91.93±0.69 94.55±0.32
DOE 92.63±0.21 97.04±0.27 94.84±0.07 85.16±2.20 99.20±0.09 97.77±0.31 96.57±0.18 94.67±0.69 94.32±0.19
OE 90.54±0.53 99.11±0.34 94.82±0.21 90.22±1.31 99.60±0.14 97.58±0.27 96.58±0.70 96.00±0.13 94.63±0.26
OE+UM 90.65±0.66 99.42±0.34 95.04±0.24 92.85±2.16 99.72±0.17 97.03±1.14 95.83±2.16 96.36±0.37 94.51±0.31
OE+UMAP 90.58±0.60 99.55±0.32 95.06±0.14 92.97±3.57 99.78±0.08 97.34±1.14 95.37±2.27 96.37±0.65 94.63±0.26
OE+PSKD 90.66±0.26 99.50±0.15 95.08±0.12 91.80±2.19 99.73±0.11 97.89±0.11 96.91±0.37 96.58±0.44 94.75±0.18

Table 13: Fine-grained results (FPR95↓) on the CIFAR-10 benchmark.

Method Near-OOD Far-OOD ID ACCCIFAR-100 TinyImageNet Average MNIST SVHN Textures Places365 Average

OOD scoring methods (vanilla training with cross-entropy)
MSP 53.08±4.86 43.27±3.00 48.17±3.92 23.64±5.81 25.82±1.64 34.96±4.64 42.47±3.81 31.72±1.84 95.06±0.30
ODIN 77.00±5.74 75.38±6.42 76.19±6.08 23.83±12.34 68.61±0.52 67.70±11.06 70.36±6.96 57.62±4.24 95.06±0.30
Energy 66.60±4.46 56.08±4.83 61.34±4.63 24.99±12.93 35.12±6.11 51.82±6.11 54.85±6.52 41.69±5.32 95.06±0.30
Energy+UM 38.33±0.27 27.92±0.94 33.12±0.47 11.58±3.50 26.30±7.48 27.24±2.78 26.67±1.99 22.95±1.65 92.33±0.41
Energy+UMAP 37.49±0.42 28.54±0.44 33.01±0.06 8.59±1.81 20.11±6.72 31.60±1.08 26.49±1.88 21.70±1.57 95.06±0.30
Energy+PSKD 35.34±0.94 28.01±0.73 31.67±0.78 11.41±0.50 17.60±4.85 23.56±1.48 29.34±2.41 20.48±1.30 95.14±0.08

Training-time regularization methods (w/o realistic outliers)
LogitNorm 34.37±1.30 24.30±0.54 29.34±0.81 3.93±1.99 8.33±1.78 21.94±0.85 21.04±0.71 13.81±0.20 94.30±0.25
SNN 41.00±0.76 33.43±0.82 37.21±0.70 22.92±3.86 25.33±3.64 24.34±1.77 31.60±1.04 26.05±2.34 95.11±0.13
T2FNorm 30.60±0.45 22.33±0.37 26.47±0.35 3.50±1.33 5.72±0.66 19.49±2.58 22.27±1.28 12.75±0.73 94.69±0.07
T2FNorm+UM 32.60±0.80 22.98±0.34 27.79±0.55 3.63±0.96 8.39±0.95 21.81±2.79 22.39±0.91 14.06±1.31 94.02±0.13
T2FNorm+UMAP 31.61±0.72 21.95±0.79 26.78±0.75 2.95±1.12 6.87±2.01 20.95±0.17 21.67±0.72 13.11±0.81 94.69±0.07
T2FNorm+PSKD 29.72±0.51 21.72±0.52 25.72±0.28 3.67±0.93 7.03±1.01 19.48±2.51 22.11±0.33 13.07±0.17 95.06±0.01

Training-time regularization methods (w/ realistic outliers)
MixOE 58.29±8.25 44.62±7.57 51.45±7.78 38.28±13.40 20.36±3.99 33.19±4.28 43.54±4.95 33.84±4.77 94.55±0.32
DOE 28.27±0.84 12.50±0.95 20.39±0.15 35.70±3.33 2.55±0.78 10.35±1.50 13.77±0.47 15.59±1.47 94.32±0.19
OE 36.71±2.06 2.97±1.17 19.84±0.95 24.67±2.55 1.25±0.36 12.07±2.14 14.53±2.80 13.13±0.53 94.63±0.26
OE+UM 34.34±2.07 2.01±1.18 18.18±0.97 19.20±1.74 0.99±0.60 13.87±5.65 16.12±6.99 12.55±2.63 94.51±0.31
OE+UMAP 34.78±1.68 1.61±1.36 18.20±0.51 16.86±4.94 0.77±0.18 12.70±4.77 18.16±7.02 12.12±2.24 94.63±0.26
OE+PSKD 35.58±0.71 1.51±0.48 18.55±0.21 22.37±3.83 0.78±0.11 11.68±0.67 14.00±1.54 12.21±0.53 94.75±0.18
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Table 14: Fine-grained results (AUROC↑) on the CIFAR-100 benchmark.

Method Near-OOD Far-OOD ID ACCCIFAR-10 TinyImageNet Average MNIST SVHN Textures Places365 Average

OOD scoring methods (vanilla training with cross-entropy)
MSP 78.47±0.07 82.07±0.17 80.27±0.11 76.08±1.86 78.42±0.89 77.32±0.71 79.22±0.29 77.76±0.44 77.25±0.10
ODIN 78.18±0.14 81.63±0.08 79.90±0.11 83.79±1.31 74.54±0.76 79.33±1.08 79.45±0.26 79.28±0.21 77.25±0.10
Energy 79.05±0.11 82.76±0.08 80.91±0.08 79.18±1.37 82.03±1.74 78.35±0.83 79.52±0.23 79.77±0.61 77.25±0.10
Energy+UM 72.86±1.03 81.43±0.58 77.14±0.62 86.39±2.97 86.00±3.61 76.58±1.03 77.54±1.44 81.63±1.70 72.21±0.43
Energy+UMAP 76.96±0.46 82.01±0.15 79.49±0.23 84.90±4.24 85.25±3.16 78.16±1.36 78.17±0.42 81.62±1.37 77.25±0.10
Energy+PSKD 79.16±0.93 83.74±0.18 81.45±0.44 84.19±0.78 86.20±1.32 78.64±0.85 80.59±0.67 82.40±0.52 77.44±0.09

Training-time regularization methods (w/o realistic outliers)
LogitNorm 74.57±0.39 82.37±0.24 78.47±0.31 90.69±1.38 82.80±4.57 72.37±0.67 80.25±0.61 81.53±1.26 76.34±0.17
SNN 76.99±0.25 83.68±0.20 80.33±0.22 82.90±1.21 83.06±2.44 82.98±0.37 79.74±0.27 82.17±0.69 77.56±0.27
T2FNorm 76.09±0.81 83.59±0.02 79.84±0.40 86.22±2.29 86.04±1.04 77.32±1.63 81.35±0.33 82.73±1.01 76.43±0.13
T2FNorm+UM 75.21±0.34 83.43±0.23 79.32±0.24 90.89±1.97 86.22±1.95 77.63±0.82 80.10±0.67 83.71±0.37 75.67±0.41
T2FNorm+UMAP 75.69±0.27 83.56±0.37 79.63±0.28 90.58±0.68 85.67±5.89 77.72±1.34 81.28±0.47 83.81±1.84 76.43±0.13
T2FNorm+PSKD 76.95±0.33 84.04±0.18 80.50±0.25 87.17±3.19 89.94±1.41 77.80±0.44 81.60±0.31 84.13±0.69 77.14±0.08

Training-time regularization methods (w/ realistic outliers)
MixOE 78.17±0.29 83.73±0.12 80.95±0.20 76.06±5.52 72.28±0.81 77.34±0.91 79.92±0.30 76.40±1.44 75.13±0.06
DOE 75.47±0.55 97.76±0.28 86.61±0.29 72.54±4.38 95.73±0.42 86.34±1.28 82.58±0.91 84.30±0.81 75.69±0.26
OE 76.70±0.19 99.89±0.02 88.30±0.10 80.68±5.82 84.37±1.34 82.18±0.68 78.39±0.41 81.41±1.49 76.84±0.42
OE+UM 76.67±0.48 99.89±0.03 88.28±0.23 81.44±3.24 84.32±2.00 83.16±1.35 78.76±0.58 81.92±1.58 76.51±0.37
OE+UMAP 76.95±0.16 99.92±0.00 88.44±0.08 85.27±1.68 83.92±3.16 82.14±0.68 78.35±0.35 82.42±0.87 76.84±0.42
OE+PSKD 76.56±0.31 99.91±0.02 88.24±0.15 82.64±0.85 92.38±1.67 83.75±0.80 79.64±0.17 84.60±0.43 76.99±0.05

Table 15: Fine-grained results (FPR95↓) on the CIFAR-100 benchmark.

Method Near-OOD Far-OOD ID ACCCIFAR-10 TinyImageNet Average MNIST SVHN Textures Places365 Average

OOD scoring methods (vanilla training with cross-entropy)
MSP 58.91±0.93 50.70±0.34 54.80±0.33 57.23±4.68 59.07±2.53 61.88±1.28 56.62±0.87 58.70±1.06 77.25±0.10
ODIN 60.64±0.56 55.19±0.57 57.91±0.51 45.94±3.29 67.41±3.88 62.37±2.96 59.71±0.92 58.86±0.79 77.25±0.10
Energy 59.21±0.75 52.03±0.50 55.62±0.61 52.62±3.83 53.62±3.14 62.35±2.06 57.75±0.86 56.59±1.38 77.25±0.10
Energy+UM 74.91±4.09 56.81±1.04 65.86±2.06 36.56±5.81 39.72±7.86 68.30±2.69 63.00±3.26 51.90±2.04 72.21±0.43
Energy+UMAP 64.73±0.97 54.70±0.33 59.71±0.65 42.80±7.56 40.03±6.52 65.02±4.09 60.61±1.61 52.11±2.36 77.25±0.10
Energy+PSKD 60.73±4.96 48.93±0.63 54.83±2.79 42.91±2.95 44.76±4.73 63.23±2.45 55.34±0.60 51.56±2.39 77.44±0.09

Training-time regularization methods (w/o realistic outliers)
LogitNorm 73.88±1.21 51.89±0.10 62.89±0.57 34.12±8.32 47.52±8.02 77.38±2.99 55.44±1.45 53.61±3.45 76.34±0.17
SNN 71.56±2.17 49.08±0.73 60.32±1.44 46.31±1.23 54.11±6.62 54.14±1.30 59.51±0.91 53.52±1.77 77.56±0.27
T2FNorm 67.07±1.90 49.88±0.85 58.47±1.35 39.39±5.38 44.29±3.14 66.82±4.61 54.50±0.52 51.25±2.52 76.43±0.13
T2FNorm+UM 69.07±0.79 49.77±0.68 59.42±0.74 34.64±6.54 46.56±6.07 67.14±2.49 56.00±1.26 51.09±0.98 75.67±0.41
T2FNorm+UMAP 69.30±0.66 50.25±0.60 59.77±0.03 32.48±2.22 46.25±15.16 66.88±2.55 54.06±0.60 49.92±4.16 76.43±0.13
T2FNorm+PSKD 65.18±0.77 49.33±0.47 57.26±0.26 41.69±10.12 35.43±5.75 65.46±1.46 54.00±0.72 49.15±1.67 77.14±0.08

Training-time regularization methods (w/ realistic outliers)
MixOE 61.12±1.08 49.32±0.36 55.22±0.49 59.49±7.74 73.09±4.00 66.04±0.98 56.93±0.78 63.88±2.48 75.13±0.06
DOE 63.85±0.50 11.83±1.60 37.84±1.05 57.97±4.42 20.27±1.01 50.29±2.73 52.97±1.56 45.38±0.52 75.69±0.26
OE 61.26±0.22 0.21±0.01 30.73±0.11 53.31±9.91 51.84±3.45 55.83±1.82 58.30±0.72 54.82±2.79 76.84±0.42
OE+UM 61.15±0.95 0.27±0.03 30.71±0.46 50.43±4.09 49.87±3.58 54.79±2.52 58.59±1.37 53.42±2.29 76.51±0.37
OE+UMAP 60.15±0.12 0.18±0.04 30.16±0.08 49.14±1.83 52.76±5.43 55.77±1.47 58.62±0.71 54.07±1.21 76.84±0.42
OE+PSKD 62.91±1.13 0.19±0.10 31.55±0.57 50.30±4.22 34.67±3.87 52.94±2.22 56.95±0.40 48.72±0.74 76.99±0.05
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Table 16: Fine-grained results (AUROC↑) on the ImageNet-200 benchmark.

Method Near-OOD Far-OOD ID ACCSSB-hard NINCO Average iNaturalist Textures OpenImage-O Average

OOD scoring methods (vanilla training with cross-entropy)
MSP 80.38±0.03 86.29±0.11 83.34±0.06 92.80±0.25 88.36±0.13 89.24±0.02 90.13±0.09 86.37±0.08
ODIN 77.19±0.06 83.34±0.12 80.27±0.08 94.37±0.41 90.65±0.20 90.11±0.15 91.71±0.19 86.37±0.08
Energy 79.83±0.02 85.17±0.11 82.50±0.05 92.55±0.50 90.79±0.16 89.23±0.26 90.86±0.21 86.37±0.08
Energy+UM 79.15±0.46 84.43±0.29 81.79±0.38 93.75±0.56 92.11±0.41 89.18±0.46 91.68±0.37 85.01±0.31
Energy+UMAP 77.94±0.42 84.22±0.66 81.08±0.39 93.25±0.69 93.19±0.16 88.42±0.35 91.62±0.29 86.37±0.08
Energy+PSKD 79.87±0.29 85.81±0.42 82.84±0.32 92.97±0.19 91.80±0.31 89.40±0.26 91.39±0.16 86.79±0.25

Training-time regularization methods (w/o realistic outliers)
LogitNorm 78.18±0.59 86.24±0.46 82.21±0.52 96.40±0.23 92.36±0.24 91.17±0.47 93.31±0.15 86.18±0.60
SNN 77.47±0.24 85.18±0.31 81.33±0.19 92.82±0.36 94.55±0.10 89.45±0.19 92.28±0.21 86.56±0.03
T2FNorm 78.82±0.08 86.63±0.04 82.72±0.05 96.72±0.21 91.97±0.28 91.47±0.21 93.38±0.11 86.52±0.21
T2FNorm+UM 79.25±0.31 86.53±0.11 82.89±0.20 96.52±0.25 91.80±0.26 91.32±0.26 93.21±0.19 86.31±0.24
T2FNorm+UMAP 78.77±0.24 86.27±0.41 82.52±0.32 96.36±0.10 91.65±0.27 91.06±0.08 93.02±0.09 86.52±0.21
T2FNorm+PSKD 78.82±0.11 86.83±0.20 82.83±0.12 96.79±0.10 92.28±0.34 91.75±0.08 93.61±0.17 86.74±0.09

Training-time regularization methods (w/ realistic outliers)
MixOE 80.15±0.21 84.99±0.28 82.57±0.23 90.94±0.17 87.02±0.22 87.22±0.04 88.39±0.02 85.73±0.09
DOE 80.64±0.71 85.81±0.54 83.23±0.60 90.64±1.21 87.04±1.74 87.05±1.41 88.24±1.45 79.87±3.12
OE 82.14±0.17 86.89±0.25 84.51±0.21 89.08±0.18 87.33±0.22 88.22±0.19 88.21±0.19 85.78±0.12
OE+UM 82.57±0.31 87.32±0.18 84.94±0.17 89.96±0.05 87.50±0.21 88.59±0.07 88.68±0.07 85.71±0.23
OE+UMAP 82.30±0.16 86.83±0.08 84.56±0.08 89.37±0.28 87.44±0.06 88.37±0.20 88.39±0.18 85.78±0.12
OE+PSKD 82.56±0.12 87.39±0.13 84.98±0.10 89.51±0.10 87.85±0.19 88.47±0.07 88.61±0.10 86.31±0.11

Table 17: Fine-grained results (FPR95↓) on the ImageNet-200 benchmark.

Method Near-OOD Far-OOD ID ACCSSB-hard NINCO Average iNaturalist Textures OpenImage-O Average

OOD scoring methods (vanilla training with cross-entropy)
MSP 66.00±0.10 43.65±0.75 54.82±0.35 26.48±0.73 44.58±0.68 35.23±0.18 35.43±0.38 86.37±0.08
ODIN 73.51±0.38 60.00±0.80 66.76±0.26 22.39±1.87 42.99±1.56 37.30±0.59 34.23±1.05 86.37±0.08
Energy 69.77±0.32 50.70±0.89 60.24±0.57 26.41±2.29 41.43±1.85 36.74±1.14 34.86±1.30 86.37±0.08
Energy+UM 68.91±1.49 51.55±0.82 60.23±1.13 24.69±1.40 35.46±1.94 37.23±1.30 32.46±1.30 85.01±0.31
Energy+UMAP 70.33±0.65 51.28±1.55 60.81±0.84 26.23±1.76 31.71±0.75 39.46±1.02 32.47±0.67 86.37±0.08
Energy+PSKD 67.88±0.33 46.36±1.34 57.12±0.63 24.11±0.93 35.05±1.30 35.77±1.19 31.64±0.87 86.79±0.25

Training-time regularization methods (w/o realistic outliers)
LogitNorm 68.07±0.77 47.52±1.71 57.80±1.22 15.10±1.26 31.21±1.79 29.62±1.08 25.31±0.20 86.18±0.60
SNN 73.11±0.93 46.60±0.28 59.85±0.46 25.66±0.76 24.81±0.66 33.64±0.60 28.04±0.64 86.56±0.03
T2FNorm 66.41±0.26 44.88±0.54 55.65±0.20 13.99±0.68 32.39±1.41 29.38±0.60 25.25±0.48 86.52±0.21
T2FNorm+UM 65.27±0.88 45.13±0.65 55.20±0.71 14.73±1.12 34.32±1.87 29.89±0.39 26.31±0.91 86.31±0.24
T2FNorm+UMAP 66.62±0.55 45.66±0.93 56.14±0.69 15.07±0.14 33.58±0.69 30.11±0.26 26.25±0.30 86.52±0.21
T2FNorm+PSKD 65.97±0.30 44.14±0.63 55.06±0.46 13.54±0.08 31.92±1.78 28.84±0.42 24.77±0.75 86.74±0.09

Training-time regularization methods (w/ realistic outliers)
MixOE 67.94±0.43 47.95±0.63 57.95±0.23 29.97±0.20 50.23±1.21 40.17±0.67 40.12±0.66 85.73±0.09
DOE 63.70±0.04 44.59±0.99 54.14±0.51 29.13±3.75 44.87±1.93 38.81±3.35 37.60±2.95 79.87±3.12
OE 64.20±0.45 40.90±0.66 52.55±0.51 28.93±0.58 41.82±1.09 34.78±0.24 35.18±0.63 85.78±0.12
OE+UM 63.07±0.83 40.71±0.65 51.89±0.64 27.59±0.31 42.19±1.64 34.51±0.36 34.76±0.56 85.71±0.23
OE+UMAP 63.48±0.10 41.20±0.35 52.34±0.22 28.81±0.64 41.62±0.85 34.66±0.59 35.03±0.68 85.78±0.12
OE+PSKD 63.57±0.79 40.19±0.15 51.88±0.47 27.97±0.38 40.70±0.88 33.76±0.29 34.14±0.33 86.31±0.11
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